REPAIR OF EMBANKMENT FAILURE ON TERRE ROUGE-VERDUN ROAD

Occurrence of cracks on Terre Rouge Verdun Link Road (TRVLR) and embankment collapse over a stretch of 260 meters in January 2015

Finite element analysis carried out to determine causes of embankment failure due to a layer of soft colluvium and residual breccia

Figure 8-8: SLS - Maximum shear strains at CH 8 240

Embankment Failure Area

Fig-18 Longitudinal Section

EXCAVATION OF UNSUITABLE SOIL

Drainage layer & Trench Drain for Efficient Drainage of Subsurface Water

FILL WITH CRUSHED STONE

Landslide During Excavation

STABILIZATION WITH REINFORCED CONCRETE PILES (191 nos.)

191 nos. of piles of 1.0 m diameter consisting of 2 rows placed 2.0 m apart with the piles staggered at 2.5 m spacing and average length of 30 m up to bedrock strata

Layout & Profile of stabilization Piles

Layout Plan and longitudinal line for Piles at West side

PILE TESTING

SONIC LOGGING TEST

LOW STRAIN PILE INTEGRITY TEST

COARSE ROCK FILL

57,500 m³ crushed stone 0/250 mm & 52,200 m³ coarse rock fill 0/400

CROSS-SECTION OF TERRE ROUGE-VERDUN EMBANKMENT

1

ROAD STRUCTURE (LAYING OF CRUSHER RUN)

ROAD STRUCTURE – LAYING OF WEARING COURSE

COMPLETION OF EMBANKMENT TERRE ROUGE-VERDUN

